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Abstract

With the growing use of computer modeling
and simulation, in all aspects of engineering, the
scope of traditional optimization has to be ex-
tended to include simulation models. Some unique
aspects have to be addressed while optimizing via
stochastic simulation models. The optimization
procedure has to explicitly account for the ran-
domness inherent in the stochastic measures pre-
dicted by the model. This paper outlines a general-
purpose framework for optimization of terminat-
ing discrete-event simulation models. The meth-
odology combines a chance constraint approach
for problem formulation, together with standard
statistical estimation and analyses techniques. The
applicability of the optimization framework is il-
lustrated by minimizing the operation and support
resources of a launch vehicle, through a simulation
model.

Introduction

Simulations are used to study physical systems
or processes that are too complex to permit ana-
lytical model formulation and evaluation. The
complexity in the physical system is usually at-
tributed to its size, interaction between its sub-
systems or components, and randomness inherent
in its processes. In simulation modeling, the
physical system under consideration is mimicked

or imitated with the help of a computer program.
The performance or the response of the system
can be observed by running the simulation pro-
gram with operational data. These operating pa-
rameters can be changed to obtain a desired im-
provement in the simulation response and hence
performance of the system.

The power of modern computing and the
emergence of simulation software in recent years,
has contributed to the increasing use of simulation
in industry. Simulation models now span diverse
application areas such as: designing and analyzing
manufacturing systems, characterization of semi-
conductor devices, determining ordering policies
for an inventory system, and analyzing a financial
or economic system, to name a few (Law and
Kelton, 1991).

With the growing incidence of simulation mod-
eling, it is essential to extend the scope of tradi-
tional optimization to include the simulation do-
main. Optimization procedures for simulation
have to specifically account for the randomness
inherent in the stochastic simulation models. Often
in practice, however, the randomness is ignored
and simulation models are analyzed in an ad-hoc
manner (Law and Kelton, 1991). In this paper, a
unifying framework, based on well established
procedures in mathematical programming and sta-
tistics, is outlined for use with terminating types of
discrete-event simulations. Such a methodology
has been generally lacking in the simulation opti-



mization literature, which largely focuses on de-
veloping new optimization approaches.

The framework employs the chance constraint
approach for treating stochastic constraints for the
purpose of problem formulation (Charnes and
Cooper, 1956). Standard statistical techniques are
employed for estimating the stochastic compo-
nents of the simulation. Optimization techniques
such as path or pattern search methods, can then
be applied in conjunction with this framework, to
optimize the system. The framework provides
guidelines for a rigorous study so that resulting
inferences can be made with statistical confidence.
The methodology is illustrated by minimizing the
operation and support resources for a reusable
launch vehicle, modeled through a terminating dis-
crete-event simulation. A genetic algorithm is used
to perform the numerical optimization.

The Simulation Optimization Problem

In this section, the general stochastic simulation
optimization problem is introduced with the help
of an example. Consider a terminating simulation
modeling the activities of a bank telling system, in
an optimization study. The model simulates the
essentially stochastic processes of customer arri-
val, queues, and teller service and idle times,
through appropriate probability distributions. Let
us suppose that the optimization problem is as
follows:

Minimize the average waiting time for bank
customers arriving randomly, while ensuring
that the average teller idle time does not exceed a
certain level (say 20 minutes), and resources re-
quired do not exceed an allowable limit (say
$60,000/ year).

The objective function i.e. ‘minimization of the
average time that a customer waits for service’, is
stochastic in nature and predicted by the simula-
tion. The problem has two constraints. The
‘average teller idle time not to exceed 20 minutes’
constraint is stochastic and predicted by the simu-

lation. The ‘total resources (teller salaries) not to
exceed $60,000’ constraint is deterministic. Sala-
ries are based on the number of tellers assigned to
the simulation by the user at run-time. The tellers
assigned clearly influence the resources and sys-
tem performance. Optimization thus requires de-
termining the number of tellers to assign, so as to
minimize the average customer waiting time
within the constraint space.

A general simulation optimization problem can
thus be stated as determining the settings of the
input parameters X = (X1, X2,, X3,,......, Xp,) ∈  S,
over a region S ⊂  Rp, which optimize the ex-
pected response E(F(X)) (Jacobson and Schruben,
1989). The region S ⊂  Rp is defined or bounded
by the constraints of the form E(Z(X)) ≥ b, where
Z(X) may be based on the stochastic simulation
response.

Such problems are known to be hard to solve
(Jacobson and Schruben, 1989). The objective
function and/or constraints may be predicted by
the stochastic simulation and hence the problem
lacks a closed form analytical formulation. Calcu-
lus based methods and mathematical program-
ming techniques, requiring explicit problem for-
mulation and continuous domains, cannot be ap-
plied (Fu, 1994). Non-linear programming ap-
proaches such as path and pattern search methods
are generally used to optimize simulated systems.
Recently, probabilistic search strategies such as
genetic algorithms and simulated annealing have
also been used with good results.  

Assumptions

Due to its random nature, each run of a simula-
tion has the potential to give rise to slightly differ-
ent output responses. Hence, the responses pre-
dicted by the simulation are generally estimated
through a sample collected by replicating the
simulation with different random number seeds.
Statistics such as the mean, variance, and interval
estimates are used for estimation. These statistics,
computed in the standard manner, are based on
several assumptions. These are:



1. The stochastic process is covariance stationary.
2. The sample variance is an unbiased estimator of

the population variance.
3. The observations are independent and identi-

cally distributed.

The above assumptions do not always hold true in
simulation studies. For example, covariance sta-
tionarity may not rigorously hold for terminating
simulations, unless the simulation time span is
sufficiently long to warrant stationarity. In termi-
nating simulations, a simulation stops when a
natural events signaling the end of the simulation
run occurs. (For instance, in the bank teller exam-
ple, the simulation time span may be defined as 8
a.m. to 5 p.m.). Since we do not necessarily run
the simulation until steady state, the underlying
joint distributions of the random variables may
change over time. Also, in order to generate inde-
pendent and identically distributed observations, a
true random number generator is required. How-
ever, in practice, pseudo-random number genera-
tors are used. Furthermore, Law and Kelton
(1991) observe that simulation output data is usu-
ally correlated.

Therefore, the above assumptions do not hold
in the strictest sense and may be violated by a
varying degree. However, there are no other ac-
cepted analyses methods for simulation data.
Hence it is recommended that regardless of slight
violations, standard statistical estimation be used
(Law and Kelton, 1991; Pritsker, 1984; Kleijnen,
1987; and Fishman, 1978).

Accuracy

One of the issues associated with a stochastic
simulation, is the accuracy with which a stochastic
variable is to be estimated. The desired accuracy
for each parameter can be specified by the decision
maker in terms of statistical confidence intervals.
(Confidence intervals state the probability (1-α),
that the true mean is actually contained in an inter-
val of width (±w), about the estimated mean).

When a simulation involves multiple stochastic
variables, the overall confidence (1-α ) associated

with an optimization study, is based on satisfying
the individual confidence intervals (1-α i) simul-
taneously. Thus the overall confidence satisfies the
Bonferroni inequality given by

 P i≥ −∑1 α ,

and implies a lower overall accuracy.
For studies involving ten or less stochastic vari-

ables, if an overall confidence for the study (1-α )
is desired, then the individual confidences (1-α i )
can be selected by the following relation:

α αi∑ = .

However, for more than ten stochastic variables,
the accuracy of individual variables obtained by the
Bonferroni inequality may be prohibitively high.
For example, if an overall confidence of 90% is
desired for a simulation involving ten variables,
the individual confidences have to be atleast 99%.
(Similarly, if the individual confidence intervals of
ten stochastic variables is 90%, the overall confi-
dence is only greater than or equal to zero). There-
fore, for such cases, standard 90% or 95% individ-
ual confidence intervals are recommended (Law
and Kelton, 1991). However, the analysis results
in such cases should be interpreted with caution, as
one or more of the individual confidence intervals
may not contain the corresponding true mean.

Replications

Once the accuracy for each stochastic variable is
established, the number of replications required for
the optimization study can be determined. The ac-
curacy depends on the sample size or the number
of replications used in a study. A large sample size
implies that the estimated mean is closer to the true
mean, and hence increases the accuracy. A high
level of accuracy is usually desired so that the re-
sults of the simulation study and hence subsequent
decisions can be made with a satisfactory level of
confidence. However, due to the finite resources
(CPU time) available for a simulation study, the



number of replications possible are usually lim-
ited.

The individual confidence levels established
above can be used to obtain the required sample
size for a desired accuracy in estimating the indi-
vidual means. The following steps are undertaken
to compute the sample size (Law and Kelton,
1991; Kleijnen, 1987):

1. In an initial pilot experiment, the simulation
model is run for say 1000 or more replications,
to obtain a representative distribution for each
stochastic variable.

2. The estimated mean and variance for each sto-
chastic parameter are computed from the pilot
experiment.

3. Based on these estimates, the sample size or the
required number of replications can be com-
puted for each stochastic variable. For the speci-
fied confidence or probability (1-α i) that an
interval (width ±w about the estimated mean)
contains the true mean, the number of replica-
tions is determined as follows:

( )z s w1

2

−α

where z1-- α  represents the standard normal sta-
tistic covering an area (1-α ), and s is the stan-
dard deviation of the sample.

The highest number of replications so computed is
selected for the simulation study. The individual
confidence of variables can be assessed at this new
sample size. The variables that required lower rep-
lications, will have correspondingly higher confi-
dences at the newly established sample size.

Chance Constraints

The variability inherent in stochastic constraints
complicates the simulation optimization problem
by forming fuzzy boundaries for the feasible re-
gion. This presents a danger of erroneously ac-

cepting a solution as feasible, while it may have a
high probability of being infeasible, and vice versa.
The chance constraint theory approach can be used
to convert the stochastic constraints into determi-
nistic constraints. Chance constraints (Charnes and
Cooper, 1959) permit constraint violation up to a
pre-specified probability limit. The decision maker
expresses a risk tolerance, in terms of a permissi-
ble probability of constraint violation. Consider a
stochastic constraint of the form A(x) ≤ b, where
A(x) is a simulation response. Using the chance
constraint approach, this can be reformulated in
terms of risk tolerance as P(A(x) > b) ≤ α, where
α  denotes the extent to which constraint violation
is permitted.
 The chance constraints can be implemented
through confidence interval estimates (Teleb and
Azadivar, 1994). We know that the confidence
associated with an interval estimate denotes the
probability that the interval contains the true pa-
rameter. For example, the upper limit associated
with an interval of confidence (1-α) states that the
probability that the true mean exceeds this limit is
at most α.. Thus, the upper and lower limits of the
interval at the specified confidence (1-α) (or risk
α) provide deterministic boundaries for the in-
feasible region. In this manner, confidence inter-
vals provide a means of implementing chance
constraints.

Using confidence intervals, the upper limit at
confidence (1-α) can be used to denote the chance
constraint P(A(x) > b) ≤ α, as A(x)upp lim, α  ≤ b. The
confidence intervals are estimated by using the
Student’s t distribution in the standard manner:

Upp Lim x
t s

n

n
_

( )( ),= + −1 α

Low Lim x
t s

n

n
_

( )( ),= − −1 α

where n is the number of replications, x is the es-
timated mean, s is the standard deviation, and t(n-

1),∝  is obtained from the Student t distribution at (n-
1) degrees of freedom and α coverage.



The above confidence intervals based on Stu-
dent’s t are robust to minor deviations from nor-
mality of the distribution. However, in cases of
serious non-normality and very small sample size,
the Johnson’s modified t statistic for non-normal
distributions, is recommended (Johnson, 1978;
Kleijnen, 1987). This adjusted statistic approxi-
mates Student's t distribution, by accounting for
the skewness of the distribution, thus permitting
its use for hypothesis testing and confidence inter-
vals. Johnson's modified t statistic has been used
successfully on distributions with varying degrees
of non-normality, including the exponential distri-
bution (Johnson, 1978; Kleijnen, 1985). The con-
fidence intervals by the modified statistic are given
by

Upp Lim x
t s

n s n

n
_
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Low Lim x
t s

n s n
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_
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where µ 3 is the third central moment estimated in
the standard manner.

Application to Operations and
Support Modeling

The above simulation optimization framework
is applied to a NASA model simulating the opera-
tion and support activities of launch vehicles dur-
ing conceptual design (Ebeling and Donohue,
1994). It uses estimated values for component re-
liability and maintainability, to simulate the mis-
sions, and pre- and post-flight maintenance. Given
the operation and support resources (individual
crew assigned to nine maintenance sub-systems
cn, and vehicles in the fleet v) the model predicts
the number of missions flown and the mean vehi-
cle turn-time for a particular space program. The
problem is to:

Minimize the cost function
100*v+ c1+c2+c3+c4+ c5+c6 + c7+c8+ c9

subject to stochastic constraints evaluated by the
simulation:
(1) Average delay E(delay) not to exceed 48 

hours
(2) Average mission rate of the space program

E(suc_mis) is met (140 missions in five
years).

Minimization of the resources thus requires the
determination of the smallest fleet and mainte-
nance crew size, that enables meeting the target
mission rate in a timely manner.

    Problem        Formulation    The stochastic constraints
were converted to deterministic constraints by us-
ing the chance constraint approach. The NASA
decision makers expressed a risk tolerance, in
terms of permissible probability of constraint vio-
lation, of 5%. These risk tolerances are stated
symbolically as:

P[E(delay) > 48 hours] ≤  0.05
P[E(suc_ mis) < 140 ] ≤  0.05

The limits at the specified 95% confidence (5%
risk tolerance) were established by using the Stu-
dent’s t distribution as described above. These
limits provide deterministic boundaries for the in-
feasible region, as follows:

delayupp_lim, .05  ≤  48 hours
suc_mislow lim, .05   ≥  140

     Accuracy       and        Sample        Size   The accuracy desired
was specified in terms of confidence (1-α ) that
the true mean is within the interval ±w, by NASA
engineers as:

Desired
width ±w

Desired
conf. (1-α )

Delay ±48 hours 80%
Successful Missions ±2 95%

The number of replications required were com-
puted using the steps outlined in the preceding



sections. This computation yielded: 19 replications
for the average delay, and 18 replications for suc-
cessful missions. Hence, a conservative sample
size of 20 was selected.

    Results   The problem formulated above was
solved by applying a genetic algorithm (Gage,
1995). A genetic algorithm is a biased random
search approach that has been used successfully
for optimization in complex landscapes (Holland
1975; Goldberg, 1989). Unlike other mathematical
programming techniques, a genetic algorithm does
not require continuity, differentiability, and explicit
problem formulation. Due to these reasons, the
genetic algorithm is an attractive technique for the
simulation domain.

Inspired by the mechanics of natural selection
and evolution, a genetic algorithm uses binary
strings to encode parameters, for representing so-
lutions in the search space. Based on the fitness of
such binary strings, contained in a randomly se-
lected initial generation, subsequent generations are
created by mating and mutation of the strings. The
genetic algorithm continues to form new genera-
tions, in this manner, until a suitable criterion is
reached. For a detailed description of genetic algo-
rithms please see Goldberg (1989), and Srinivas
and Patnaik (1994).

The minimum objective function found by the
genetic algorithm when applied to the problem
formulated above was 273. Two vehicles and 73
crew contribute to this objective function. The con-
straints at this input combination were satisfied
and well within their tolerance levels. The mean of
average delay was 15.73 hours, with a 95% confi-
dence that the delay does not exceed 38 hours. The
target mission rate of 140 missions in a five year
time span was achieved with a 95% confidence.
The above stochastic measures were estimated at
an 80% confidence of being within ± 2 days, and
95% confidence of being within ± 2 missions, re-
spectively. The overall accuracy of the optimiza-
tion study was lower at 75% confidence.

Conclusions
Stochastic simulation modeling presents some

unique problems that have to be addressed during
optimization. In this paper a general purpose
framework has been outlined for the optimization
of terminating discrete event simulations. A uni-
fying framework or methodology for treating the
stochastic components of such problems has been
generally lacking in the literature. The methodol-
ogy presented here employs a chance constraint
approach to convert the fuzzy boundaries pre-
sented by stochastic constraints into deterministic
constraints. Standard statistical techniques are used
to perform the optimization study at desired levels
of confidence. Therefore the optimization frame-
work is based on a sound statistical background.
Inferences drawn from such studies can be stated
in terms of interval estimates, which are more ro-
bust than point estimates. This provides more in-
formation while making decisions based on the
simulation study. The practical significance of the
methodology was illustrated by applying it to a
NASA simulation. The operation and support re-
sources of reusable launch vehicles were success-
fully minimized with the help of a genetic algo-
rithm.
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